

Implications of Computer Vision Driven Assistive Technologies Towards Individuals with Visual Impairment

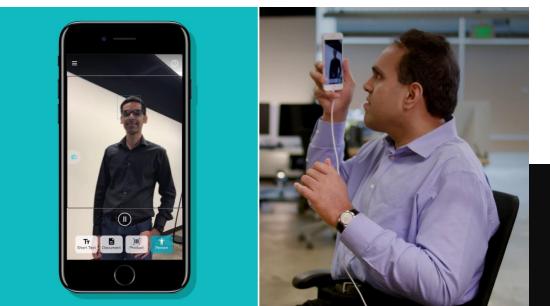
06/17/19

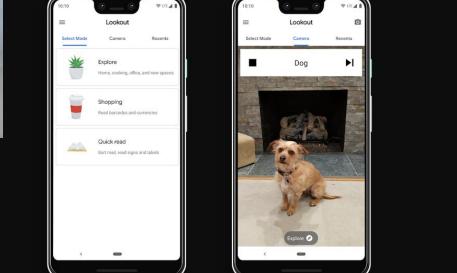
Presented by: Linda Wang

MASc in Systems Design Engineering Software Engineering Intern at Lyft Level 5

LONG BEACH • CALIFORNIA

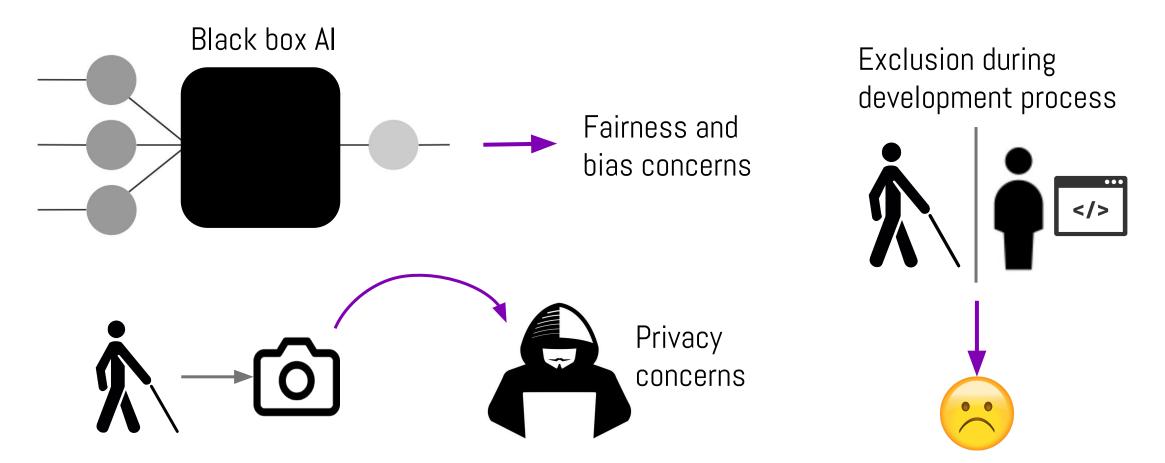
Motivation





https://www.perkinselearning.org/technology/blog/seeing-ai-ios-app-recognizing-people-objects-and-scenes https://www.theverge.com/2019/3/13/18263426/google-lookout-ai-visually-impaired-blind-app-assistance

Motivation



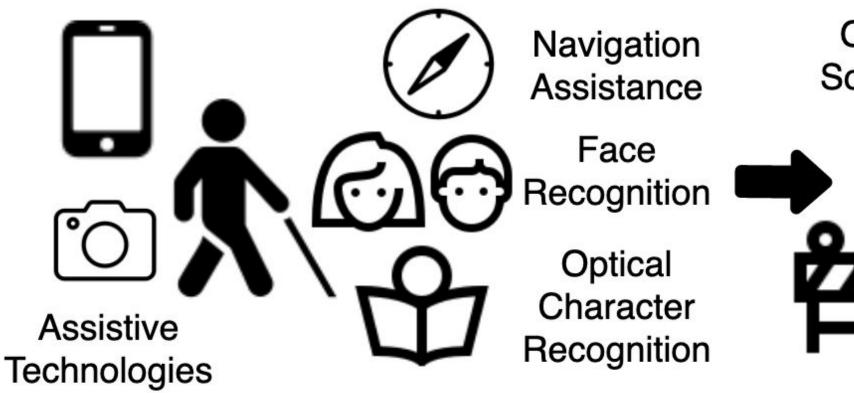
https://www.vectorstock.com/royalty-free-vector/custom-coding-icon-vector-13512550 https://www.vectorstock.com/royalty-free-vector/creative-hidden-hacker-logo-vector-22540040

Goal of the paper

- Address the positive and negative aspects of using computer vision in assistive technologies for individuals with visual impairment
- Considerations for researchers while conducting computer vision research to reduce negative implications of AI-powered assistive technologies on the lives of individuals with visual impairment

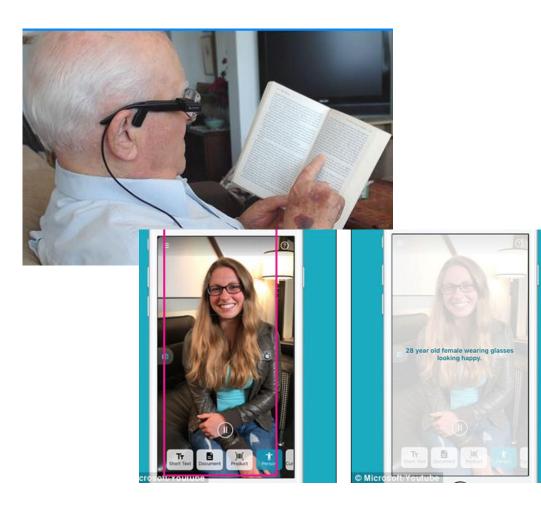
Positive Implications

Face Recognition and OCR Navigation Assistance Overcoming Social Barriers



Overcoming Social Barriers

Positive Implications



Navigation Assistance

- Presence of smartphones + computer vision
 - means of communication → overcome social barriers
 - increase autonomy
 - and many more as computer vision advances

http://cats.cuny.edu/orcam-my-eye-2-0/ https://www.abilitynet.org.uk/news-blogs/microsoft-seeing-ai-best-ever-app-blind-people-just-got-even-better

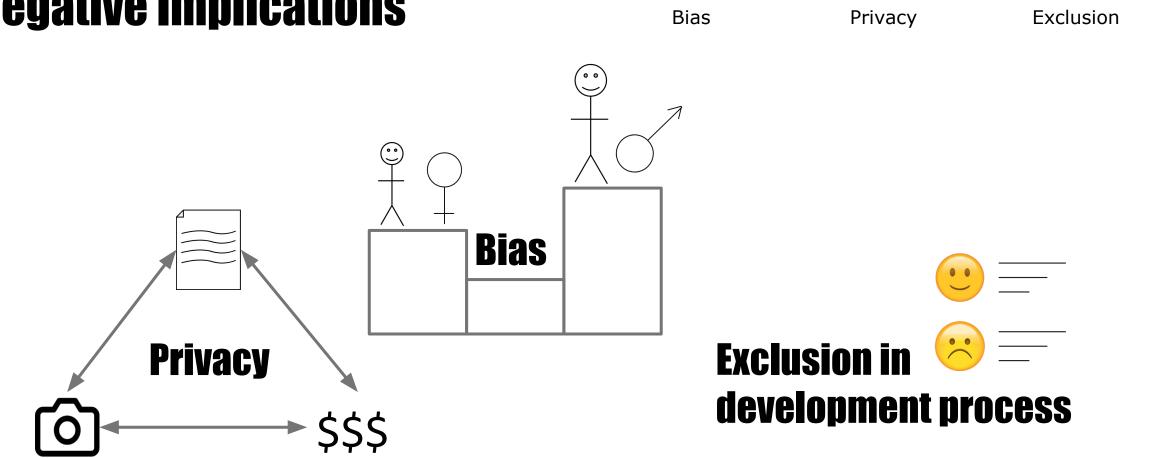
Positive Implications

- Use of cameras + sensors to give directions
 - Localization for unknown indoor and outdoor environments
 - Helps to walk in a straight line
 - Helps to find rooms

https://www.wsj.com/articles/hey-whats-with-the-white-cane-1476228132

D. A. Ross. Implementing assistive technology on wearable computers. *IEEE Intelligent Systems*, 16(3):47–53, May 2001. Y. Tian, X. Yang, C. Yi, and A. Arditi. Toward a computer vision-based wayfinding aid for blind persons to access unfamiliar indoor environments. *Machine vision and applications*, 24:521–535, 04 2013.

Implications of Computer Vision Driven Technologies



Classifier	Metric	All	\mathbf{F}	Μ	Darker	Lighter	DF	DM	\mathbf{LF}	$\mathbf{L}\mathbf{M}$	
MSFT	PPV(%)	93.7	89.3	97.4	87.1	99.3	79.2	94.0	98.3	100	
	Error Rate(%)	6.3	10.7	2.6	12.9	0.7	20.8	6.0	1.7	0.0	
	TPR (%)	93.7	96.5	91.7	87.1	99.3	92.1	83.7	100	98.7	
	FPR (%)	6.3	8.3	3.5	12.9	0.7	16.3	7.9	1.3	0.0	
Face++	PPV(%)	90.0	78.7	99.3	83.5	95.3	65.5	99.3	94.0	99.2	
	Error Rate(%)	10.0	21.3	0.7	16.5	4.7	34.5	0.7	6.0	0.8	
	TPR (%)	90.0	98.9	85.1	83.5	95.3	98.8	76.6	98.9	92.9	
	FPR (%)	10.0	14.9	1.1	16.5	4.7	23.4	1.2	7.1	1.1	
IBM	PPV(%)	87.9	79.7	94.4	77.6	96.8	65.3	88.0	92.9	99.7	
	Error Rate(%)	12.1	20.3	5.6	22.4	3.2	34.7	12.0	7.1	0.3	
	TPR (%)	87.9	92.1	85.2	77.6	96.8	82.3	74.8	99.6	94.8	
	FPR (%)	12.1	14.8	7.9	22.4	3.2	25.2	17.7	5.20	0.4	
Table 1: Overall Error on Pilot Parliaments Benchmark, August 2018 (%)											
Company A		11 F	emales	Males	Darker	Lighter	DF	DM	LF	LM	
Target Corporations											
Face ++ 1.		.6	2.5	0.9	2.6	0.7	4.1	1.3	1.0	0.5	
MSFT 0.4		48	0.90	0.15	0.89	0.15	1.52	0.33	0.34	0.00	
IBM 4.4		41	9.36	0.43	8.16	1.17	16.97	0.63	2.37	0.26	
Non-Target Corporations											
Amazon 8.0		66	18.73	0.57	15.11	3.08	31.37	1.26	7.12	0.00	
Kairos		60	14.10	0.60	11.10	2.80	22.50	1.30	6.40	0.00	

J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy disparities in commercial gender classification. In S. A. Friedler and C. Wilson, editors, *Proceedings of the 1st Conference on FAT*, volume 81 of *PMLR*, pages 77–91, 23– 24 Feb 2018.

I. D. Raji and J. Buolamwini. Actionable auditing: Investigating the impact of publicly naming biased performance results of commercial ai products. In *Conference on AIES*, 2019.

• Low error rates in facial recognition has led to commercialization of models

Privacy

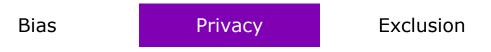
- Studies have shown consistent bias in areas of gender, race and age
 - \rightarrow Adversely impacting already marginalized groups

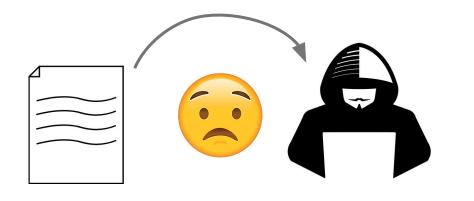
Bias

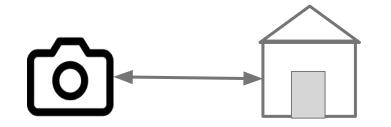
 Commercialization before evaluating biases and potential impacts on protected groups raises a concern

Exclusion

Implications of Computer Vision Driven Technologies



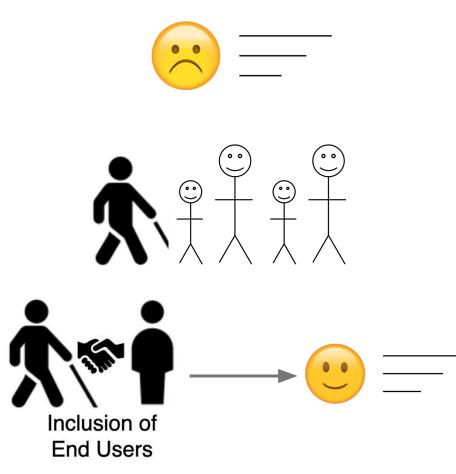




- Privacy concerns because of the amount of personal data stored
 - home monitoring: older adults are willing to share with family and doctors if data is useful, but concerned about exploitation and misuse of their personal data
- Found cameras obtrusive
 - trade-off privacy lost if prevent transfer to long-term care

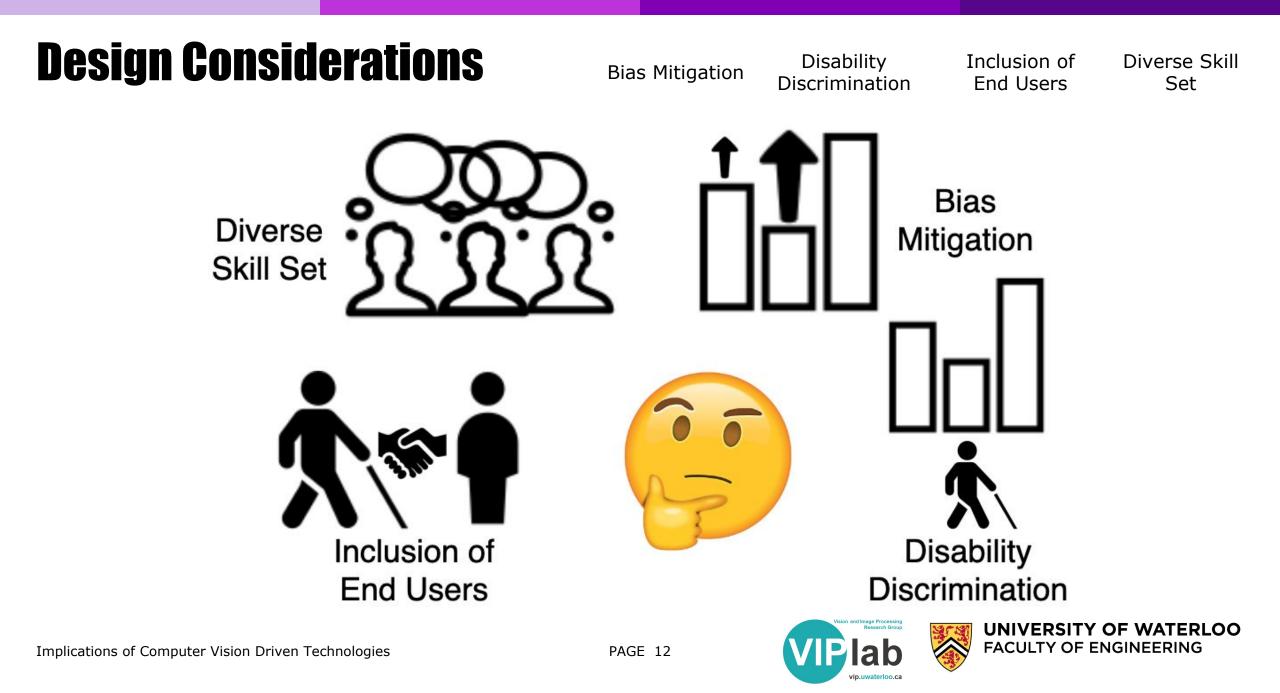
https://www.vectorstock.com/royalty-free-vector/creative-hidden-hacker-logo-vector-22540040

Privacy



- Good design, usability and accessibility can be poorly evaluated
- Need to consider user's lifestyle and aspirations
 - age and level of adaptation to condition
 - no matter the age, all individuals expressed inclusion by peers and appearing ordinary
 - more accustomed individuals prefer to be more independent
 - \rightarrow Inclusion of end users

Implications of Computer Vision Driven Technologies



Design Considerations

Bias Mitigation

PAGE 13

Disability Discrimination

Inclusion of End Users Diverse Skill Set

What-If Tool	Home	Introduction	Features	Demos	About	Reference

What If...

you could inspect a machine learning model, with minimal coding required?

OPEN PROJECT

AI Fairness 360

The AI Fairness 360 toolkit (AIF360) is an open source software toolkit that can help detect and remove bias in machine learning models

https://developer.ibm.com/open/projects/ai-fairness-360/ https://pair-code.github.io/what-if-tool/

Implications of Computer Vision Driven Technologies

Mitigating Bias in Gender, Age and Ethnicity Classification: A Multi-task Convolution Neural Network Approach

Abhijit $\mathrm{Das}^{(\boxtimes)},$ Antitza Dantcheva, and Francois Bremond

CAPUCHIN: CAUSAL DATABASE REPAIR FOR ALGORITHMIC FAIRNESS

A PREPRINT

Babak Salimi

Luke Rodriguez

Vision and Image Processing Research Group Laboratoria

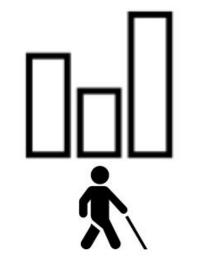
Bill Howe

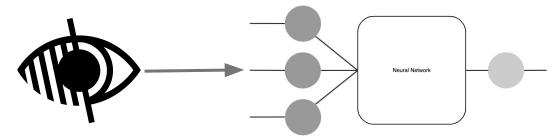
Design Considerations

Bias Mitigation

Disability Discrimination

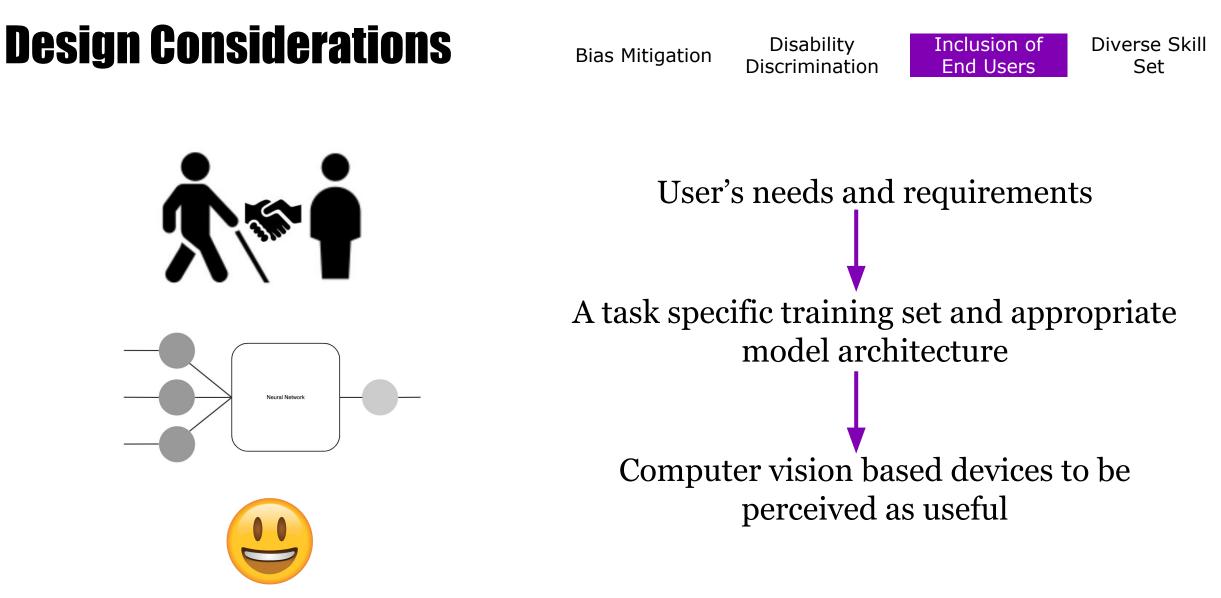
Inclusion of End Users Diverse Skill Set





https://achievementcenteroftexas.org/special-needs/vision-impairment-center/

- Ways to mitigate disability bias have not been explored → potential for under-representation of individuals with visual impairment or other forms of disability
- Different forms and degrees
 - Difficult for machine learning to generalize



OF WATERLOO

UNIVERSIT

FACULTY OF ENGINEERING

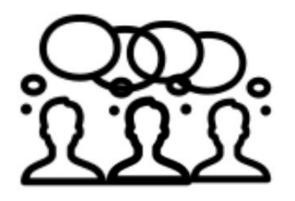
Design Considerations

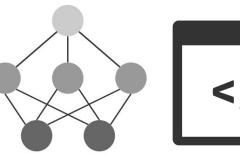
Bias Mitigation

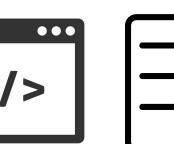
Disability Discrimination

Inclusion of End Users

Diverse Skill Set







- Need a team with a diverse skill set to address both positive and negative implications
- Ex:
 - Researchers \rightarrow bias
 - Developers \rightarrow data security
 - Designers → user's needs and goals

https://www.vectorstock.com/royalty-free-vector/custom-coding-icon-vector-13512550 https://www.onlinewebfonts.com/icon/190597

Discussion

- Conclusion:
 - Identified positive and negative implications of computer vision based assistive technologies towards the visually impaired
 - Identified ways to mitigate negative implications
- Future work:
 - Consider possible implications of trained models and adopt ways to mitigate these implications
 - Take the same views towards other marginalized groups

Thank you for listening! Questions?

Implications of Computer Vision Driven Technologies

PAGE 18

