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Abstract—Although CNNs are widely used in vision tasks
and achieve high accuracies, they can still fail on unseen data
as they handle images quite differently than the brain. CNNs
do not encode position and orientation relationships between
features and so can be easily tricked. Capsule Networks were
conceived by Hinton et al. as a more robust architecture capable
of storing pose information and spatial relationships to recognize
objects more like the brain does. Lower-level capsules store 8
dimensional vectors of features such as position, hue, texture etc.
which they route to higher-level capsules using a novel routing
by agreement algorithm. This gives capsule networks viewpoint
invariance–which has so far eluded CNNs.

Capsule Networks have produced great results on the MNIST
dataset [3], and this paper extends the previous work to apply
Capsule Networks to a face recognition task on the Labeled Faces
in the Wild dataset. The trained model achieves a test accuracy
of 93.7% and performs well on unseen faces that were rotated or
blurred, matching or beating the performance of state-of-the-art
CNNs. From previous results and the results of this paper, it can
be concluded that capsule networks can outperform deeper CNNs
on unseen transformed data due to their unique equivariance
properties.
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I. PROBLEM & MOTIVATION

Convolutional networks (CNNs) are currently the state-of-
the-art when it comes to any computer vision related task,
used widely in everything from object recognition systems
to helping autonomous cars see. However, they fall short in
three distinct and important ways that emphasize how far
removed they are from how the brain processes vision [1]
which can be easily seen when dealing with the problem of
facial recognition. First, there is no encoding of an object’s
orientation and position, a major issue for early CNNs. While
this was somewhat solved by the use of augmented images,
CNNs still fail to recognize a transformed object if its po-
sition and orientation are not included in its training data.
It would require an infinite amount of data to generalize to
all viewpoints. Secondly, the mechanism that CNNs use to
make predictions is easily tricked. A CNN looks at an image
and extracts meaningful features that are then used to classify
it accordingly. However, if all components are present but
in different locations, the CNN will still classify it as the
object despite the jumbled feature placement. This is typically
caused by the pooling layer performing a feature subsampling
that ignores position and location of features. For example,
a face with the ears in place of the eyes and vice-versa
will still be classified as a face by a CNN despite a human
clearly recognizing that it is not a face. Finally, CNNs route

information in a way that is fundamentally different from how
the brain does. While CNNs route all information through
all neurons from low to high levels, the brain routes specific
information to specialized areas that are better at understanding
specific kinds of information.

While computer vision and face recognition have immense
potential to revolutionize a number of industries, CNNs are
still failing to match the flexibility and accuracy of the human
brain. Given a face with the ears and eyes swapped, a CNN
will label it as a face despite it clearly appearing to a human as
otherwise. This leads us to believe that CNNs only recognize
the presence of features and do not do very well recognizing
the spatial relationships between features as the brain does so
well.

To address the issues with CNNs and in an attempt to
build networks that more closely resemble the visual cortex,
capsule networks were recently conceived by Hinton et al. In
this paper, capsule nets are applied to a face recognition task
to explore the workings of this novel network and compare it
to the brain.

II. BACKGROUND

Capsule Networks are a fairly recent invention; there are
only three key papers that currently exist on capsule networks
authored by Geoffrey Hinton: Transforming Auto-encoders [2],
Dynamic Routing Between Capsules [3], and Matrix Capsules
with EM Routing [4], which collectively form the definitive
pillars outlining the capsule network architecture and the
routing algorithm that trains them.

Capsule networks offer a novel approach to image recogni-
tion that appears to work in a much more similar manner to the
brain by using the spatial relationship of features [5]. Lower
layer capsules identify features and include information about
the position and location of that feature [1]. After multiplying
these lower layer capsules with a weight, the network is
able to generate a pose of the face and identify whether it
is a face or not. Capsule network architecture attempts to
be viewpoint invariant so location and position relationships
between features are relevant regardless of the perspective.

The core idea behind capsule networks is the capsule–a
group of neurons whose activity vector represents the instantia-
tion parameters of a specific type of entity, such as an object or
an object part. In other words, it represents the probability that
the entity exists as well as its orientation [3]. The probability
of the visual entity being present is locally invariant [2]. Each
capsule learns to recognize an implicitly defined visual entity



and then outputs a probability that the entity is present within
its limited domain and a set of instantiation parameters such
as precise pose, lightning, and deformation. Active capsules at
one level make predictions using transformation matrices for
the instantiation parameters of higher-level capsules [3]. When
multiple predictions agree, a higher level capsule becomes
active. This can be further expanded to routing by agreement,
where a lower-level capsule prefers to send its output to higher
level capsules whose activity vectors have a big scalar product
with the prediction coming from the lower-level capsule.

Capsule networks can be seen as an evolution of CNNs
in a number of ways. While CNNs use scalar-output fea-
ture detectors and max-pooling, capsule networks use vector-
output capsules and routing-by-agreement to make predictions
[3]. These are backed by biologically plausible models of
invariant pattern recognition in the visual cortex. The brain
uses dynamic connections and canonical object based frames
of reference to generate shape descriptions that can be used
for object recognition [6]. In 1993, Olshausen explained how
position and scale invariant model of object representation
using dynamic routing of information are biologically plausible
[7]. While CNNs can have exponential inefficiencies when
learning new viewpoints, capsule networks can generalize to
novel viewpoints and better understand the intrinsic spatial
relationship between features in an image. This is because
capsule networks have a more similar structure to the brain.
For example, locally invariant probabilities and equivariant
instantiation parameters are similar to the output of complex
and simple cells respectively [2].

The structure of the brains visual processing network is
key to the following results–it uses position and orientation
information, it is difficult if not impossible to trick with
rearranged features, and it routes information to specialized
areas as needed. A capsule network uses similar structures to
attempt to achieve the same results. In the brain, there are
specific regions or groups of neurons that are used to process
different types of visual information and that take into account
the configuration of those features. Existing research already
shows that inverting a face lowers one’s ability to recognize
who the face belongs to but does not eliminate a brains ability
to recognize that it is a face [8]. Recent research reveals that
the brain uses the coordination of a collection of neurons that
focus on specific configurations of features to pick out a face
[9]. In other words, each face cell, that acts as the highest layer
of the network, is primed to a specific ranked combination
of facial features to discern what is or is not a face. The
brain uses configural processing of faces in three ways–it is
sensitive to first-order relations between features to understand
that a stimulus is a face, it uses holistic processing to connect
features into a gestalt, and it has sensitivity to second-order
relations that preserve the distance between features [10].
Brains are capable of recognizing blurred faces with reasonable
accuracy since blurring only removes featural information but
still allows for holistic processing and sensitivity to second-
order relations.

Although face recognition has achieved very high accuracy
using convolutional neural networks, such as Googles FaceNet
achieving 99.63% accuracy on the Labelled Faces in the Wild
dataset [11], these networks are incapable of providing precise
spatial relationships between high-level parts due to several

Fig. 1. Sample of first augmented dataset

stages of subsampling. For instance, if the position of a nose
and a mouth are switched on a face, convolutional neural
networks will still classify the image as a face. For capsule
networks, the two active capsules representing the mouth and
the nose have to have the right spatial relationship to activate
the next capsule, which in this case will be the face, in order
to classify the image as a face. If the predictions for the pose
of the face agree for the mouth and the nose, then the mouth
and the nose must be in the right spatial relationship to form
a face.

III. METHODS

A. Datasets and Sources

Functional implementations of capsule networks exist on-
line that are based on Sabour et als Dynamic Routing Be-
tween Capsules paper [3]. For the purposes of this paper,
an implementation of a capsule net used to identify traffic
signs created by Thibault Neveu was modified for the purposes
of facial recognition [12]. This traffic sign implementation is
similar to ones created for the MNIST dataset [13]. In the
MNIST capsule network, the main structure of the network
involves input images being processed by primary capsules
that then pass information to secondary digit capsules before
classification occurs further down the line [14].

The dataset used was the Labeled Faces in the Wild (LFW)
database of face photographs detected by the Viola-Jones face
detector [15].

B. Feature Selection & Extraction

Only a portion of the LFW dataset was used, with an initial
requirement that each name had a minimum of ten faces. This
lead to a total set of 158 unique faces within a dataset of 4324
images. This set was split into two sections: 3459 images for
training, and 865 images for testing.

Data augmentation was performed to increase the size of
the dataset. Some shearing as well as brightness and contrast
shifting was performed. A sample of the augmented dataset
can be seen in Figure 1.



A second attempt at training the network used a dataset
that required a minimum of 25 faces per person. This lead to
a total set of 42 unique faces within a dataset of 2588 images.
This set was split into two sections in the same manner as the
previous dataset.

Data augmentation was performed to increase the size of
the dataset with minor position shifting.

C. Machine Learning Approach

A 3 layer capsule network is used to classify faces for
this paper. This is considered a shallow network that uses
two convolutional and one fully connected layer. An example
of a 3 layer capsule network architecture (used for MNIST
classificatin) is shown in Figure 2.

The first convolutional layer converts pixel intensities of
the input images to activities of local feature detectors that are
used as inputs to the second convolutional layer. The second
layer is a convolutional capsule layer, known as the primary
capsules. This layer consists of 32 channels of convolutional 8
dimensional capsules. The dimensions can represent features
such as hue, position, size, orientation, deformation, texture etc
[2]. Each 8 dimensional vector output is sent as input to all
the 16 dimensional capsules in the layer above using routing
by agreement. The third and final layer has 16 dimensional
capsules per class.

Lower level capsules ”place-code” information information
while high level capsules will ”rate-code” positional informa-
tion in the real-values components of the output vector of a
capsule. Place-coding to rate-coding and higher-level capsules
represent more complex entities with more degrees of freedom
which can be seen in the increasing dimensionality of capsules
as one moves up the hierarchy.

D. Training

Dynamic Routing is used between capsules in second and
final layer as part of the training process to learn the coupling
coefficients, cij . The routing algorithm is detailed in Algorithm
1.

At the beginning of each routing, all log prior
probabilities,bij , are set to zero. A log prior probability is the
probability that capsule i in layer l should be coupled with
capsule j in layer l+1. The prior probabilities are updated for
r iterations to calculate the final output vector of the capsule
in the layer l + 1.

First, the coupling coefficients,cij between each capsule in
layer l and layer l + 1 are calculated using a routing softmax
shown in the Equation 1. This ensures that the coupling
coefficients between a capsule in layer l and all the capsules
in the layer l + 1 sum to 1.

cij =
exp(bij)∑
k exp(bij)

(1)

Next, the total input,sj to a capsule j in layer l + 1 is
determined using Equation 2, which is a weighted sum over
all prediction vectors, ûj|i. A prediction vector, Equation 3,

is the output of a capsule i in layer l multiplied by a weight
matrix between capsule i and capsule j.

sj =
∑
i

cijûj|i (2)

ûj|i = W ijui (3)

The output vector,vij , of a capsule represents the probabil-
ity that that entity represented by the capsule is in the current
input. This output is calculated using the squash function,
Equation 4, which is a non-linearity that ensures short vectors
are shrunk to almost zero and long vectors are reduced to
slightly below one. Using the agreement between the current
output of each capsule j and the prediction vector made by
capsule i, the log prior probabilities are updated.

vij =
||sj ||2

1 + ||sj ||2
sj
||sj ||

(4)

For the purposes of the report, an existing architecture
developed by Thibault Neveu was primarily leveraged, which
was implemented in Tensorflow[12]. The final model was
trained with GPUs on Floydhub for two hours, as that was
the maximum time allocated to allow the model to run. The
final model was trained for 2000 steps and was terminated after
that since the training error had stagnated at 100%, and there
were clear signs of overfitting as discussed in the following
section.

The hyperparameters of batch size and learning rate were
chosen as 128 and 0.001 based on the parameters used in
the capsule network described in Dynamic Routing Between
Capsules [3]. The hyperparameter of min faces per sample
was set to 25 in order to balance the size of the data set with
the number of faces per label.

E. Error Metrics

The goal is to have top-level capsules for each unique face
class k with a long instantiation vector if and only if the
predicted face is in the image. This results in the following
equation:

Lk = Tkmax(0,m
+−||vk||)2+λ(1−Tk)max(0, ||vk||−m−)2

(5)

Tk = 1, m+ = 0.9 and m− = 0.1 if and only if face of
class k is present. To stop the initial learning from shrinking
the lengths of the activity vectors of all the face capsules, λ,
the down-weighting of the loss for absent face classes, is used.
The total loss is the sum of the losses for all the face name
capsules. The sum of margin losses is minimized using the
Adam optimizer.



Fig. 2. Capsule Network Architecture [3]

Algorithm 1 Routing algorithm [3]
1: procedure ROUTING(ûj|i, r, l)
2: for all capsule i in layer l and capsule j in layer l + 1:
3: bij ← 0
4: for r iterations do
5: for all capsule i in layer l: ci ← softmax(bi) . softmax computes Eq. 3
6: for all capsule j in layer (l + 1): sj ←

∑
i cijûj|i

7: for all capsule j in layer (l + 1): vj ← squash(sj) . squash computes Eq. 1
8: for all capsule i in layer l and capsule j in layer (l + 1): bij ← bij + ûj|i · vj

9: return vj

Fig. 3. Graph comparing training accuracy (red) versus validation accuracy
(blue)

Fig. 4. Graph comparing training loss (red) versus validation loss (blue)

IV. RESULTS

After training the capsule network, both accuracy and loss
were recorded for training and validation datasets.

Some things of note–the final loss on the entire test dataset
for the final model was 0.088 while the final accuracy on

entire test dataset is 93.7%. This is significant as capsule
networks trained and validated on the various MNIST datasets
had accuracies around 99.2% depending on the architecture
and dataset used [3].

The brain is capable of identifying inverted faces without
being trained on inverted data as a result of the way visual
processing is structured. In the same way, testing the capsule
network with an inverted face revealed that the network was
able to identify the inverted face without additional training.

After the model was trained, an inverted face was passed
in alongside a regular face to compare the outputs, seen in
Figure 5. The discrepancy in the highest and second highest
softmax layer being lower for the inverted faces corresponds to
biological data, where human beings in general have a tougher
time recognizing inverted faces than non-inverted ones. An
important factor to note in the above inversion results is that
while these are some examples that show the networks are
able to recognize inverted results, as seen in the Figure 5, the
models accuracy is significantly lower as a whole on inverted
faces.

Current literature on capsule networks discusses how ”Cap-
sNets [are] moderately robust to small affine transformations
[3]. This claim was tested with this facial recognition capsule
network. The results are shows in Figure 6.

From Figure 6, there is a sharp decrease in accuracy in the
network after a 30 degree rotation. At a rotation of 5 degrees,
the accuracy of the network is 93.14%. This is comparable and
even better than some networks described in existing literature.
CapsNet was able to achieve an accuracy of 79% on the
affnist dataset, which is an augmented dataset of the MNIST
dataset where the original dataset has been transformed [3]. A



Fig. 5. Comparing the results of a regular and inverted face through the
trained model.

Fig. 6. Graph of test accuracy as images are rotated

CNN was only able to achieve 66% accuracy on the affnist
dataset [3]. Similar results are demonstrated on other datasets
outlining the superior performance of CapsNets over CNN
in recognizing unseen viewpoints [3]. This is an important
fact, as it illustrates how capsule networks handle rotations
better than CNNs that likely results from the capsule networks
understanding of the spatial relationships between features that
is used for prediction.

To further test the invariance of CapsNets to unseen data,
the test dataset was transformed with a Gaussian blur and run
through the network to produce the accuracies seen in Figure
7. Even with a high amount of blur, the CapsNet perform quite
well and is comparable to the state of the art CNNs which are
much deeper and trained with much more data.

Together, these results indicate that capsule networks per-
form better at facial recognition than CNNs when faced
with transformed face images. High levels of noise, blur,
missing pixels, and brightness have a detrimental effect on
the verification performance of all [CNN] models [16]. The
current wisdom for CNNs to generalize to different viewpoints
requires lots of data and leverages maxpooling, which only
provides small translational invariance. 2D Convolution is
equivariant under translation but not rotation, and this allows
capsule networks to outperform CNNs when dealing with

Fig. 7. Graph of test accuracy as images are blurred

Fig. 8. Performance of State-Of-The-Art CNNs on blurred faces [16]

rotation and proportion change. Capsule networks have more
equivariance properties and so require less data and fewer
layers–which is good news as both data and computational
power can be prohibitively expensive to most. Lastly, capsule
networks are also thought to be more robust to adversarial
attacks [4].

V. CONCLUSIONS & RECOMMENDATIONS

“An under-trained CapsNet with early stopping which
achieved 99.23% accuracy on the expanded MNIST test set
achieved 79% accuracy on the affnist test set. A traditional
convolutional model with a similar number of parameters



which achieved similar accuracy (99.22%) on the expanded
MNIST test set only achieved 66% on the affnist test set.” [3].
It is clear that the performance of the capsule network trained
on the small segment of the LFW dataset is comparable. From
the accuracy and loss graphs, the facial recognition model
seems to be overfitting. This is likely due to a lack of data.
Additionally, the number of routing iterations is an important
factor in the performance of the capsule network. Increasing
routing iterations tend to increase network capacity and overfit
the training dataset [3].

For future experiments on face recognition using capsule
networks, experimenting with fewer iterations of routing,
larger training set size and larger image size could improve
the overall accuracy and avoid overfitting. The number of
iterations of routing should be experimented with to verify the
convergence of bij , the log prior probability. As the number of
iterations increase, bij improves, however, increasing iterations
also increases the network capacity, which is undesirable.
Therefore, the optimal tradeoff between an additional iteration
and change in bij should be found. Furthermore, a larger
training set with more samples for each face can also avoid
overfitting. The image size was reduced to 32 by 32, however,
the downsampling resulted in a loss of resolution. Training the
model on larger images and better resolution will definitely
increase accuracy, as there would be more information for
the network to better discriminate and learn different faces
appropriately. Overall this approach suffers from the same
problems as most other machine learning tasks: a larger and
more robust dataset to better suit the network architecture is
required.

Finally an important step to consider for more accurate
comparisons would be to build an affine transform dataset for
faces to provide a direct comparison with established results.
In addition, when comparing results between established lit-
erature and face recognition results, further analysis has to be
done comparing the response activities of the different capsule
neurons between the MNIST dataset and the face dataset, since
recognizing MNIST characters is considered to be an easier
task compared to face recognition.

Despite the overfitting, the results of the capsule network
on blurred and inverted faces are very promising. Clearly,
capsule networks have the potential to recognize inverted
faces without requiring any training on inverted faces be-
forehand, just like the brain. Furthermore, the capsule net-
works performance in recognizing blurred images provides
some confirmation that the use of spatial relationships creates
accuracy comparable to state-of-the-art networks even with a
significantly more limited training dataset.

From early literature on capsule networks and the results
of this paper, it can be concluded that capsule networks
outperform CNNs on unseen transformed datasets.
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